Cross Beater Mill - stainless steel grinding insert
PULVERISETTE 16
The Cross Beater Mill PULVERISETTE 16 is equipped with a grinding insert, cross beater and impact plates made of stainless steel. A 5 litre collecting vessel with filter hose is also included.
Also available are bottom sieves made of stainless steel in various sizes and perforations and for the comminution of large quantities a special 30 litre collecting vessel with filter hose.
The element analysis for grinding insert, cross beater and impact plates are found here
Please note: For this FRITSCH mill, you require at least one bottom sieve.
For the PULVERISETTE 16 are bottom sieves made of stainless steel either in trapezoidal or round perforations in various sizes available. In general, the finer the desired final fineness, the smaller the perforation of the bottom sieve should be; the larger the perforation, the higher the throughput.
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The bottom sieves are made of stainless steel trapezoidal resp. round perforation sheets of metal. Larger openings mean faster throughput, less time in the mill and less wear.
Bottom sieves with trapezoidal perforation offer an improved size reduction through extra shearing action. Bottom sieves with round perforation are recommended for size reduction of brittle material of medium fineness with smaller grain width band.
General specifications | |
Material | Stainless steel – 1.4404/316L |
ISO/EN/DIN code | X2CrNiMo17-12-2 |
Chemical composition | |
Element | Share % |
Iron – Fe | approx. 62.8 |
Carbon – C | 0.03 |
Silicon – Si | 1 |
Manganese – Mn | 2 |
Phosphorus – P | 0.045 |
Sulphur – S | 0.015 |
Chromium – Cr | 18.5 |
Molybdenum – Mo | 2.50 |
Nickel – Ni | 13.00 |
Nitrogen – N | 0.110 |
Physical and mechanical properties | |
Density | 8.0 g/cm³ |
Hardness | 215 HB |
The standard equipment delivered with the PULVERISETTE 16 includes a cloth filter hose between the mill and the 5 litre collecting vessel that ensures a constant airflow in the grinding chamber; accelerates the throughput and prevents blockages – for fast, gentle comminution.
We also offer a 30 litre collecting vessel for grinding larger quantities.
Combine your PULVERISETTE 16 with a support stand for a stand-alone instrument that you can place anywhere. A certificate for IQ/OQ documentation is also available.
Stand for free installation of the following devices:
Universal Cutting Mill PULVERISETTE 19 variable speed 300-3000 rpm
Universal Cutting Mill PULVERISETTE 19 variable speed 50-700 rpm
Universal Cutting Mill PULVERISETTE 19 variable speed 50-700 rpm large
Universal Cutting Mill PULVERISETTE 19 variable speed 300-3000 rpm Large
Cross Beater Mill PULVERISETTE 16 with grinding insert made of cast iron
Cross Beater Mill PULVERISETTE 16 with grinding insert made of stainless steel
The PULVERISETTE 19 is shown as an example in the photo.
As standard the PULVERISETTE 16 is delivered with a collecting vessel 5 litres. For grinding large quantities this collecting vessel with a capacity of 30 litres and filter hose is recommended.
IQ/OQ documentation (questionnaire format - implementation by customer) for the independent utilization for the support of instrument qualification in the quality management system for the Cross Beater Mill PULVERISETTE 16.